A Least-Squares Approach to Consistent Information Estimation in Semiparametric Models

نویسندگان

  • Jian Huang
  • Ying Zhang
  • Lei Hua
چکیده

A method is proposed for consistent information estimation in a class of semiparametric models. The method is based on the geometric interpretation of the efficient score function, that it is the residual of the orthogonal projection of the score function for the finite-dimensional parameter onto the tangent space for the infinitedimensional parameter. The empirical version of this projection is a least-squares nonparametric regression problem. Under appropriate conditions, the sum of squared residuals of this regression is shown to be a consistent estimator of the efficient Fisher information and is actually the observed information for a class of sieve maximum likelihood estimators. Simulations studies are conducted to evaluate finite sample performance of the estimator in two illustrating examples: Poisson proportional mean model for panel count data and Cox model for interval-censored data. Finally the method is applied to two real-life examples: bladder tumor study and breast cosmesis study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

برآورد ناپارامتریک و شبه‌پارامتریک تابع تولید صنعت خودرو با تاکید بر نهاده انرژی: معرفی روش اولی - پاکس (OP) در برآورد الگوی داده‌های ترکیبی

Unobservable productivity shocks cause selection and simultaneity problems in firm’s decisions and these problems cause estimators such as ordinary least squares, have biased estimation for coefficients of production function inputs. In this study, data of five automaker companies in the period of 1383-1387 have been used and production function of car industry have been estimated by ordinary l...

متن کامل

Consistent Covariate Selection and Post Model Selection Inference in Semiparametric Regression

This paper presents a model selection technique of estimation in semiparametric regression models of the type Yi = β ′Xi + f(Ti) + Wi, i= 1, . . . , n. The parametric and nonparametric components are estimated simultaneously by this procedure. Estimation is based on a collection of finite-dimensional models, using a penalized least squares criterion for selection. We show that by tailoring the ...

متن کامل

Semiparametric Estimation in Simultaneous Equations of Time Series Models

A system of vector semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are strictly exogenous. The parametric regressors may be stationary or nonstationary and the nonparametric regressors are nonstationary ti...

متن کامل

Semiparametric Least Squares Estimation of Monotone Single Index Models and Its Application to the Itelative Least Squares Estimation of Binary Choice Models

The Semiparametric Least Squares (SLS) estimation for single index models is studied. Applying the isometric regression by Ayer et al (1955), the method minimizes the mean squared errors with respect to both finite and infinite dimensional parameters. A proof of consistency and an upper bound of convergence rates is offered. As an application example of the SLS estimation, asymptotic normality ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008